

The IR-4 Biopesticide Workshop

September 21, 2016

Michael Braverman

Handouts

- Agenda
- Priorities by discipline (Entomology, Pathology, Weed Science)
- Report results, Potential products, Decline curves, (Distributed electronically-Limited)
- Later- Voting ballots and Workshop Survey

The IR-4 Biopesticide Workshop

September 21, 2016

Michael Braverman

Workshop every other year. See you in 2018!

Results 2015 Biopesticide Workshop						
Priority	Fruit	Organic	Ornamental	Other	Vegetables	
#1	drosophila/ All crops	Fire blight (Erwinia amylovora) / Organic Pome fruit(other than apple- AND Apple)		Weeds/ All crops	Bacterial Diseases Fruiting Veg field & GH	
#2		Diabrotica spp. / Organic vegetables CUCURBITS-NE	<i>Fusarium, Pythium, Cylindrocarpon /</i> Douglas fir bareroot forestry seedlings	Varroa mite / honey bees	Whitefly, Aphid, Psyllids/GH tomato And Mites, Thrips, Aphids, whiteflies / vegetables SE	
#3	Stem gall wasp / Blueberry	Cercospora and Cladosporium leaf spot / Organic leafy greens (Spinach, Chard)	<i>Botrytis</i> leaf spot/blight / Bulb cut flowers (field & postharvest)	Public Health / Mosquito	Downy Mildew / Basil (field & GH) and basil and cucurbits SPINACH-West	
#4	Botrytis / strawberry, raspberry	Monilinia corymbosum (mummy berry disease) / Organic Blueberry (bushberry)	•	Tick	Pepino Mosaic Virus / Tomato (GH) diseases- NC	

R-4 2015 Workshop- Results 2016 Field Trials						
Priority	Fruit	Organic	Ornamental	Other	Vegetables	
#1	All crops $$	Fire blight (Erwinia amylovora) / Organic Pome fruit(other than apple- AND Apple) √	<i>Cryphonectria parasitica</i> √(Chestnut blight) / American Chestnut	Weeds/ All crops√	Bacterial Diseases Fruiting Veg field & GH	
#2	sigatoka /	Diabrotica spp. / Organic vegetables CUCURBITS-NE √	<i>Fusarium, Pythium, Cylindrocarpon /</i> Douglas fir bareroot forestry seedlings	Varroa mite / honey bees	Whitefly, Aphid, Psyllids/GH tomato And Mites, Thrips, Aphids, whiteflies / vegetables SE	
#3	Stem gall wasp / Blueberry	spot / Organic leafy	<i>Botrytis</i> leaf spot/blight / Bulb cut flowers (field & postharvest)	Public Health / Mosquito	Downy Mildew / Basil (field & GH) and basil and cucurbits SPINACH-West√	
#4	Botrytis / strawberry, raspberry	Monilinia corymbosum (mummy berry disease) / Organic Blueberry (bushberry)	Thrips, whiteflies / Roses, Gerbera <mark>Ginseng-Root</mark>	Tick	Pepino Mosaic Virus / Tomato (GH) <mark>liseases- NC</mark>	

IR-4 National Pesticide Clearance Biopesticide Efficacy And Performance Protocol 2016

Efficacy and Phytotoxicity of Biopesticides for management of Spotted Wing Drosophila (SWD) in blueberry and caneberries

Elena M. Rhodes, Postdoctoral Associate Oscar E. Liburd, Principle Investigator

TRT #	Product	AI	Rate	Timing
1	untreated	/	/	/
2	Entrust [®] SC	spionsad	6 floz / acre	every 7 days
		Chromobacterium		
3	Grandevo®	subtsugae strain PRAA4-1	3 lb / acre	every 3 - 5 days
4	Veretran D [™]	sabadilla alkaloids	15 lb / acre	every 3 - 5 days
5	Entrust [®] SC	spionsad	6 floz / acre	every 7 days
		Chromobacterium		
	Grandevo®	subtsugae strain PRAA4-1	3 lb / acre	every 3 - 5 days
6	Entrust [®] SC	spionsad	6 floz / acre	every 7 days
	Veretran D [™]	sabadilla alkaloids	15 lb / acre	every 3 - 5 days
7	Entrust [®] SC	spionsad	6 floz / acre	every 7 days
		Chromobacterium		
	Grandevo®	subtsugae strain PRAA4-1	3 lb / acre	every 3 - 5 days
	corn syrup	corn syrup	12.5% by volume	/
8	Entrust [®] SC	spionsad	6 floz / acre	every 7 days
	$Veretran D^{TM}$	sabadilla alkaloids	15 lb / acre	every 3 - 5 days
	corn syrup	corn syrup	12.5% by volume	/
9	Azera®	Azadirachtin and Pyrethrins	2.5 pts / acre	every 3 - 5 days
	corn syrup	corn syrup	12.5% by volume	/
10	VST - 006330 EP	/	4 lb / acre	every 3 - 5 days
	corn syrup	corn syrup	12.5% by volume	/

Results/Conclusion SWD

Grandevo[®] and Entrust[®] were effective and reduced SWD population below the control

The addition of corn syrup did not appear to increase efficacy

Veratran D^{TM} did not demonstrate efficacy and clogged the small CO_2 sprayed that was used

VST-006330 EP + corn syrup was not efficacious

Conclusions: natural enemies

None of the treatments negatively impacted parasitoid numbers. ID to family in process

None of the treatments negatively impacted overall predator numbers

Veratran D[™], VST-006330 EP, and Azera[®] may reduce Anthrocoridae populations

Spotted Wing Drosophila Blueberries and Brambles

Across multiple locations and years Entrust alone and in rotation with Grandevo has provided the best overall control in organic production.

Future work may focus on extension demonstration trials and possibly attract and kill techniques.

Sterile insect technique.

George Sundin MSU Fireblight Organic Apples

	Blossom blight	Shoot blight
Fire Quencher UV-A 2 pt +		
Serenade Optimum 20 oz	4.5 cde	6.3 abc
Cueva 2 qt	6.8 cde	6.0 abc
Blossom Protect 1.25 lb +Buffer Protect 8.75 lb Oxidate 1 gal per 100 gal	3.0 de	3.0 abc
Blossom Protect 1.25 lb +		
Buffer Protect 8.75 lb4 hr after oxidate;	4.3 cde	4.3 abc
Untreated control	17.8 abc	8.5 abc
Untreated control, non-inoculated	0.0 e	1.0 d

	Ken Johnson Oregon OSU Fireblight Organic Apples					
· - ·	Blighted clusters	Percent				
Treatment	Per tree	blighted floral				
		clusters***				
Water	315 a#	55.0 ab				
Blossom Protect	194 abc	31.5 cde				
Blossom Protect +Buffer protect	131 abcd	23.6 def				
Blossom Protect	38 d	6.7 g				
Buffer Protect (twice) Blossom Protect	89 bcd	16.0 efg				
Buffer Protect						
then OxiDate (1%)						

Field inoculation of two T1 siblings (~6 weeks post inoculation) Oxalate oxidase Chestnut -OxO Blight resistant +OxO

Powell SUNY Syracuse

Field inoculation of two T1 siblings (~6 weeks post inoculation)

-OxO +OxO

Pending studies bees and forest seed germination to confirm no anticipated adverse effects. Progress with regulatory agencies.

Powell SUNY Syracuse

Efficacy and Phytotoxicity of Hypovirulent CHV3-GH2 on Chestnut for the Control of Chestnut Blight

Dennis W. Fulbright Andrew M. Jarosz Joshua C. Springer Carmen Medina-Mora <u>Michigan State University</u>

Virus to weaken a fungi (Make it hypovirulent) CHV3 (GH2)

2016 experimental design to understand if longer term storage affected efficacy of hypovirulence slurry

➢Virulent and Hypovirulent controls were used again this season (N=10)

- Fresh-made slurry (N=10)
- ➢ Fresh-made but frozen for 90 days (N=5)

➢ Fresh-made on biopolymer material, dried, then reconstituted with water (90 days in freezer after dried) (N=5)

➢ Fresh-made, dried (stored for 90 days in freezer), ground, and reconstituted with water (N=5) 5 cc of HV inoculum 'goop' to treat each canker

Control of Chestnut Blight using Hypovirulence as a Biopesticide

Dennis Fulbright, Michigan State

	CHESTNUT BLIGHT CANKER RATINGS				
	1 Good	2	3	4 Bad	
Control					
V	0	0	2	8	
HV	9	1	0	0	
Treated					
Frozen	0	0	4	1	
Fresh	0	9	1	0	
Biopolymer	0	2	3	0	
Dried/ reconstituted	0	0	5	0	

Future Studies - Hypovirulent

We would like to test polymer material again.

We would like to test a powder that was refrigerated but not not frozen as it appears freezing kills the biopesticide.

Diabrotica- Organic Cucurbits. Brian Nault and Abby Seaman- Cornell

Surround (Kaolin clay) provided early season repellency of cucumber beetle

Weed control- Organic sweet potato

The

Project

Mark VanGessel- Univ. Delaware

- Ammonium nonanoate had much more activity on Palmer amaranth than Avenger AG when applied with painter rollers
- Ammonium nonanoate is OMRI approved but NOT approved for organic production

Observations

First Trial

- Minimal leaf burn
- <20% leaf burn and injury on Palmer amaranth with wick wiper
- Volume of application difficult to control with either applicator
 - painter roller was excessive volume

Second trial

- Compared Avenger AG 1:1 and ammonium nonanoate
- First application with wick applicator and observed minimal leaf burn and so followed with two applications using painter rollers
- Ammonium nonanoate was ~80% leaf burn

<u>Crop Safety of Over-the-top Herbicide</u> <u>Application in Woody Ornamental Crops</u> <u>(– Fiesta (FeHEDTA)</u>

FeHEDTA

Labelled in turf- Expand to ornamental crops

FIESTA[™] LAWN WEED KILLER Neudorf

Contains Iron (4.43%) in the form of FeHEDTA, controls broadleaf weeds!

LAWN WEED CONTROL

CONCENTRATE

Controls Broadleaf Weeds in Lawns ola las maleza anchas en cés

Kills Weeds, Not Lawns

- Fast & Effective-See Results in Hours
- Water Based, No Unpleasant Odor

After (44 days later, with 2 applications)

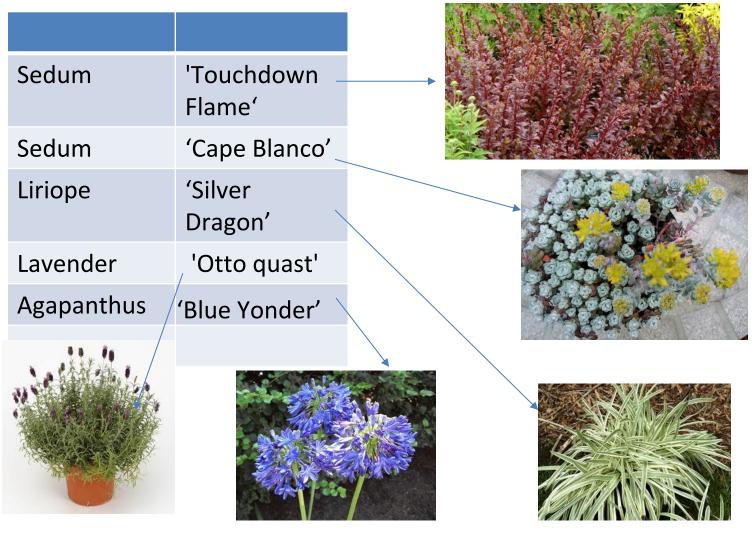
<u>Crop Safety of Over-the-top Herbicide Application</u> in Woody Ornamental Crops

(- Fiesta (FeHEDTA)

Ben Fraelich, USDA-ARS

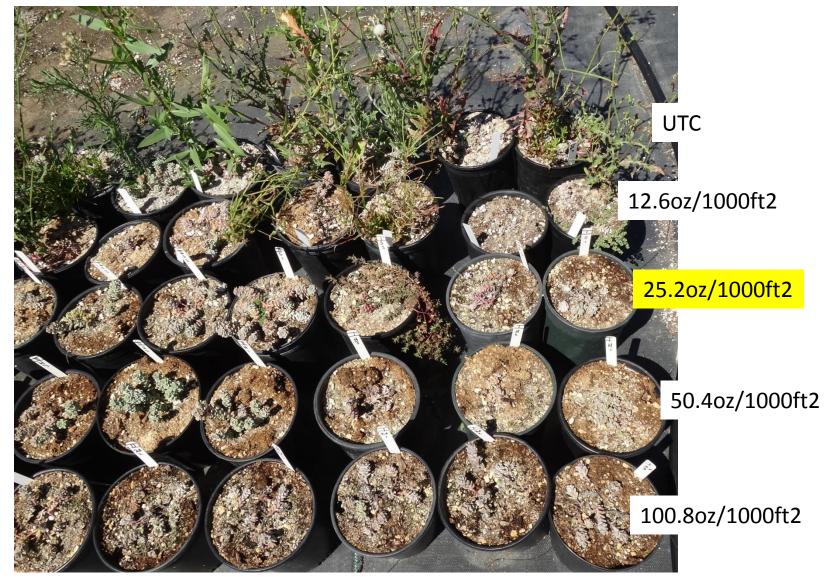
Buxus x 'Green Velvet'

No injury. No significant difference in plant growth or marketability.


Fiesta	June 2, 2016 (8 WAT)	June 3, 2016 (8 WAT)	
(product per acre)	Phytotoxicity Plant Height		Plant Width
Untreated	0.0 a	16.5 a	14.1 a
4.3 gal Turf rate	0.0 a	15.6 a	12.6 a
8.6 gal	0.0 a	15.3 a	12.8 a
17.0 gal	0.0 a	13.3 a	11.2 a
34.0 gal	0.0 a	14.9 a	11.2 a

Pinus taeda

Very slight leaf burn at 4X and 8X rates. No significant difference in plant growth or marketability.


Fiesta	June 2, 2016 (8 WAT)	June 3, 2016 (8 WAT)	
(product per acre)	Phytotoxicity	Plant Height	Plant Width
Untreated	0.0 c	36.7 a	25.8 a
4.3 gal Turf rate	0.0 c	37.3 a	25.7 a
8.6 gal	0.0 c	35.7 a	26.3 a
17.0 gal	1.3 b	36.5 a	23.9 a
34.0 gal	2.3 a	35.3 a	23.3 a

Species tested*

*Blue fescue 'Elijah blue' is currently being studied; photos not included here

Cape Blanco Sedum-Rate

Liriope - Rate

Lavender - Rate

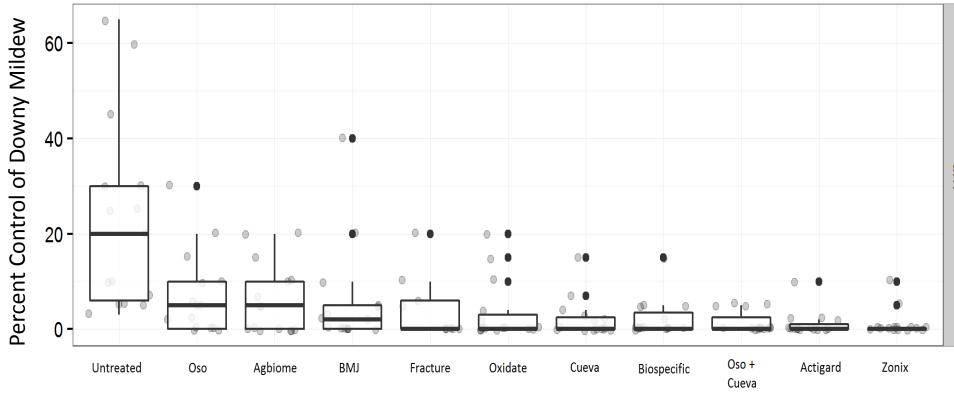
Joe Neal NC State

Fiesta severely damaged: 2 species of sedum and sempervivum

Dormant daylily and dormant hosta uninjured but injury upon growing. Injury to hosta was severe.

Dormant woody plants were uninjured.

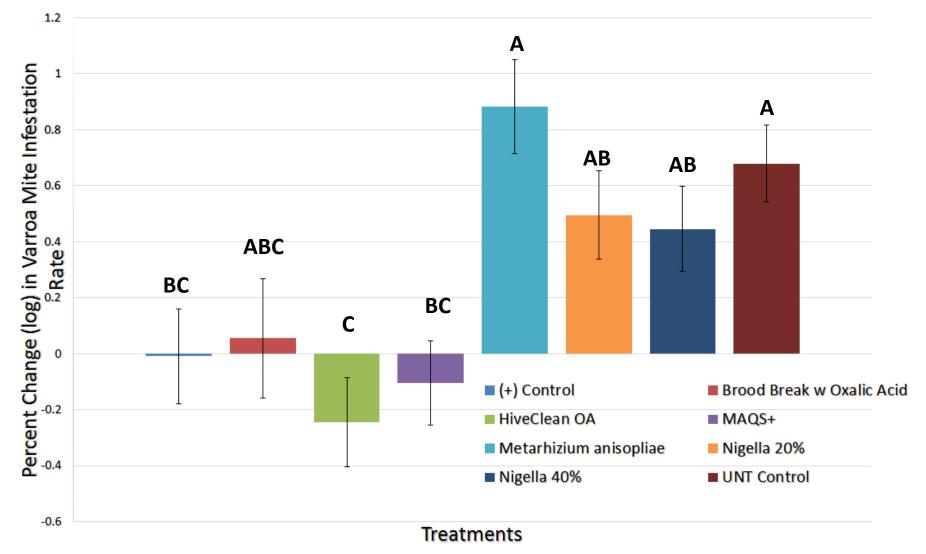
Injury to all actively growing broadleaf plants; No injury to Junipers, and some ornamental grasses. The ornamental grasses did have discoloration on the foliage but they grew out of the injury.


Joe Neal NC State

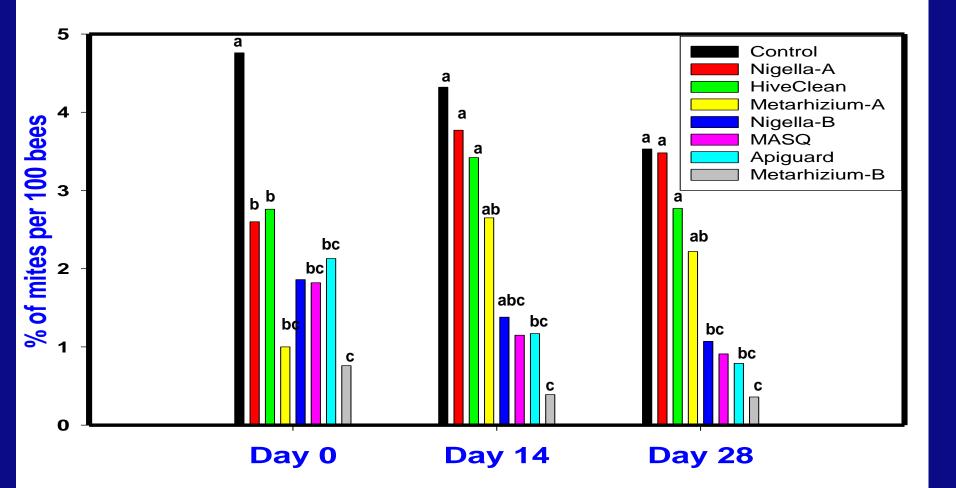
Dormant treatments for winter annual broadleaf weeds is possible. Directed applications around woody plants would be safe. More information on safety to ornamental grasses is needed. Should expand testing arborvitae, taxus, cephalataxus, fir and spruce.

Dose (oz / 1000 ft²)

Downy Mildew in Organic Spinach


TREATMENT

Neil McRoberts


University of CA, Davis

Several successful products, but might be some need for dose/application adjustment Nino- UC Extension

Mean mite % infestation at 8 weeks post initial treatment (data transformed for graphical purposes)

Mite Infestations of Adult Bees Post-Treatments L. Kanga Florida A&M

Days After Treatments

Overall several miticides tested could provide suscessful control of Varroa mites

Needs

Improve formulations Consistency Delivery systems Time of applications

Mean *Bemisia tabaci* 1st thru 4th instar nymphal densities (± SE). Summer 2016.

		<i>Bemisia tabaci</i> 1 st thru 4 th			
		instar nymphs			
Formulation	Amt/100 gal	(±SE) per 10 leaflets 25 Jul			
Water-treated		191.3 ± 63.0a			
Botanigard 22W	1.0 lb	<mark>19.0 ± 11.5bc</mark>			
PFR-97 20% WDG	28.0 oz	<mark>21.0 ± 7.3bc</mark>			
Requiem Prime EC	3.0 qt	85.5 ± 38.1ab			
M-Pede	2.0% vol/vol	<mark>22.5 ± 13.6bc</mark>			
Sivanto Prime (once)) 14.0 fl oz	<mark>0.0 ± 0.0c</mark>			
VST-006330	4.0 lb	94.5 ± 31.1ab			
<i>P</i> -value<0.0001					

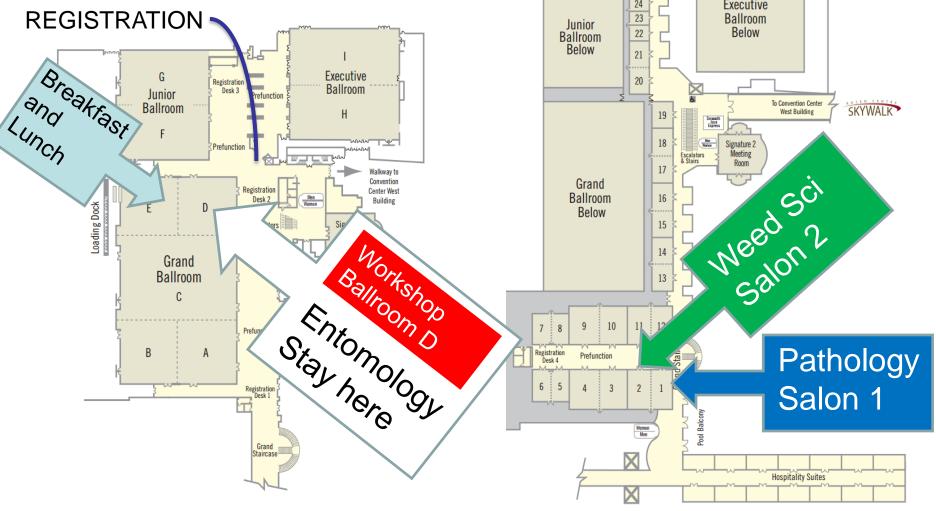
Whitefly total- all life stages

Treatment	Pre-treatment	
		Week 4
Non-treated Control	16.40±4.02	66.70±11.38ab
Botanigard	13.55±2.98	80.25±16.50a
PFR-97	13.00±3.72	95.5±17.22a
Requiem Prime	15.55±4.88	52.6±10.21ab
M-Pede	21.75±6.45	52.20±7.51ab
Sivanto	6.90±2.16	3.5±1.30cd
Sivanto	10.00±3.86	10.95±3.1c
Sivanto + Botanigard	13.40±4.71	4.60±1.69c
Sivanto + PFR-97	14.10±4.06	5.95±1.06c
Sivanto + Requiem Prime	10.35±6.33	2.15±0.42d
Sivanto + M-Pede	7.75±2.11	3.60±2.20cd
VST-006330	11.70±3.65	8.70±1.75c
Statistics	Df=11; F=0.96	Df=11; F=7.59
P value	0.4822	<0.0001

Rajagopalbabu Srinivasan, University of Georgia, Tifton

Clavibacter-Tomato. sally Miller OSU

Gray- Similar to non-inoculated control


Treatment and rate	19	Aug	26 Aug		
	severity (%)	incidence (%)	severity (%)	incidence (%)	
(1) Non-treated non-inoculated	6.3 ef	37.7 cd	13.0 d	54.2	
(2) Non-treated inoculated	15.5 a	66.2 ab	28.8 a	85.2	
(3) Actigard 50WG 0.25 oz/100 gal drench (6,7) ^y fb					
K-Phite 7LP 3.0 qt/A (1-12) ^x	6.0 ef	41.3 bcd	11.8 d	58.8	
(4) CEASE 4 qt/100 gal + MilStop 2 lb/100 gal (2-5) ^z					
Serenade Opti 20.0 oz/A + Milstop 2.0 lb/A (1-12) ^x	9.8 c-f	47.9 a-d	16.3 bcd	59.9	
(5) Double Nickel LC 1.0 qt/100 gal drench (1-5,7) ^y					
Double Nickel LC 1.0 qts/A (1-12) ^x	14.3 ab	68.2 a	28.8 a	77.0	
(6) K-Phite 7LP 3.0 qt/A + AgriPhage CMM 1 pt/50 gal/A (1-5) ^z					
+ Actigard 50WG 0.25 oz/100 gal drench (6,7) ^y fb					
K-Phite 7LP 3.0 qt/A + AgriPhage CMM 1 pt/50 gal/A (1-12) ^x	6.8 ef	43.7 a-d	15.3 cd	64.5	
(7) K-Phite 7LP 3.0 qt/A + AgriPhage CMM 1 pt/50 gal/A $(1-5)^z$					
K-Phite 7LP 3.0 qt/A + AgriPhage CMM 1 pt/50 gal/A (1-12) ^x	7.5 ef	50.8 a-d	16.8 bcd	71.5	
(8) Cueva 2.0 qt/A (1-5) ^z					
Cueva 2.0 qt/A (1-12) ^x	10.3 b-e	58.0 abc	17.5 bcd	66.7	
(9)Manzate ProStik 75DF 2.0 lbs/A foliar (1-5) ^z					
Actigard 50WG 0.25 oz/100 gal drench (6,7) ^y fb					
Manzate ProStik 75DF 2.0 lb/A (1-12) ^x					
+ Actigard 50WG 0.33 oz/A (1,3) ^x					
+ Actigard 50WG 0.50 oz/A (5,7) ^x					
+ Actigard 50WG 0.75 oz/A (9,11) ^x	7.0 ef	52.5 a-d	17.5 bcd	70.7	
(10)	12.5 abc	69.0 a	24.5 ab	76.9	
(11)	5.5 f	27.9 d	13.8 d	38.5	
(12)	11.5 a-d	64.2 ab	24.0 abc	76.0	
P value	0.0001	0.0450	0.0128	0.1686	

Rosen Hotel – Meeting registration and breakout

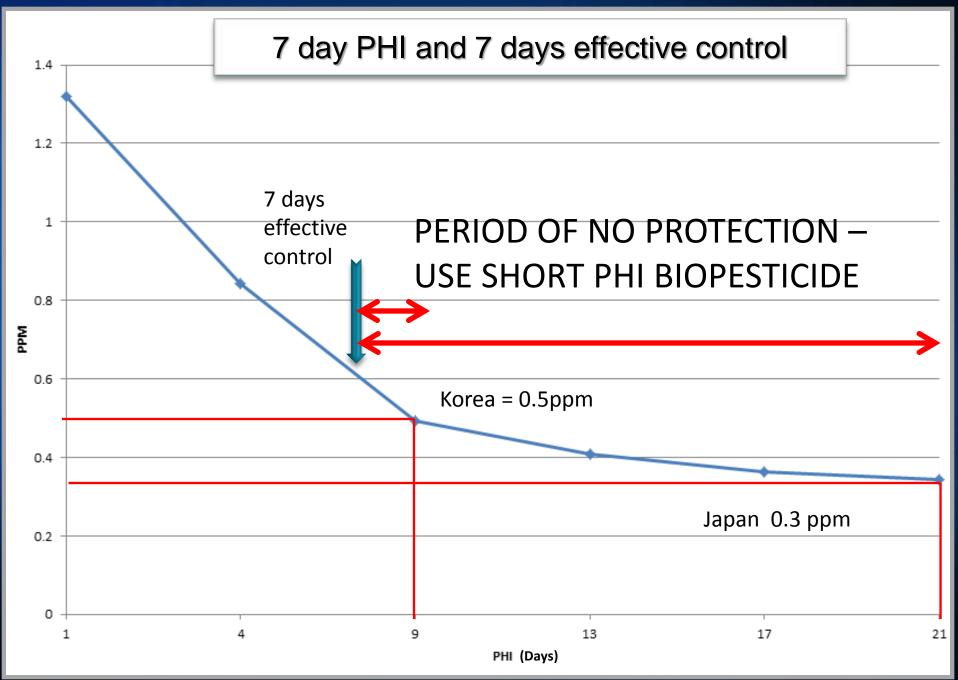
Level 1

Group discussion leaders

- <u>Entomology</u>- Hugh Smith, Doug Walsh, Oscar Liburd, Keith Dorschner, Bill Barney, Dan Kunkel
- <u>Plant Pathology-</u> Gary Vallad, Sally Miller, Meg McGrath, Joe DeFrancesco, Michael Braverman
- <u>Weed Science-</u> Cheryl Wilen, Krista Coleman, Marija Arsenovic, Jerry Baron

Breakout Groups

Guidance/Goals of the Biopesticide Workshop Breakout Groups:


- 1. What are the greatest pest management needs?
- 2. Results from last year- Encouraging, need repeating, new products to evaluate, integration?
- 3. Availability of existing conventional and biopesticide tools.
- 4. Additional factors such as -Resistance management, IPM, pending losses of registered products, Section 18s
- 5. Needs of organic agriculture
- 6. Are there biopesticide products to test (Early, Advanced, Demonstration Stage)?

2016 Biopesticide Workshop

Fruit	Organic	Orn Hort	Other	MRL- Residue mitigation	Vegetables
Spotted wing drosophila/ All	Fire blight		Weeds/ A		Bacterial Diseases Fruiting Veg
	entional p		arroa m		field & GH Whitefly/
curves co		decline o mitigation Extend the	hone		vegetables
B PHI of th the pest		onal and fill d d with	Public Health / Mosquito		Downy Mildew / Basil (field & GH) and basil and cucurbits
Buirying		1111po, minteriico /	Public health/ Tick		Pepino Mosaic Virus / Tomato (GH)

Pesticide Degradation – Decline curve

MRL- Pesticide Residue Mitigation

- 1. Crop export concerns- What are the conventional products causing trade irritants?
- 2. Differences in MRLs between US and export countries
- 3. Decline curves/persistence
- 4. PHI, retreatment interval
- 5. Target pests in last application
- 6. Biopesticides available to impact late season pests

How important and how wide is the gap in MRLs/tolerances?

GOAL- Suggest top 3 per research category

	Fruit	Organic	Other	Orn Hort	Residue	Vegetable
	1.)	1.)	1.)	1.)	1.)	1.)
Ent	2.)	2.)	2.)	2.)	2.)	2.)
	3.)	3.)	3.)	3.)	3.)	3.)
	1.)	1.)	1.)	1.)	1.)	1.)
Path	2.)	2.)	2.)	2.)	2.)	2.)
	3.)	3.)	3.)	3.)	3.)	3.)
		1.)	1.)	1.)	1.)	1.)
Weeds		2.)	2.)	2.)	2.)	2.)
		3.)	3.)	3.)	3.)	3.)

Jerry Baron

IR-4 Biopesticide Program

Future Plans

Jerry Baron Executive Director The IR-4 Project

Where Are We Coming From

- Storied History (pre-1982)
- Biopesticide Program 1.0
 - Regulatory Support & Research Grants
- Biopesticide Program 2.0
 - Organic Support & Demonstration
- Limited human and financial investment
- Biopesticide Program 3.0
 - Respond to research priorities

Dedicated resources to help develop technology

Trends with Biopesticides

Significant involvement in pest management Snake oils/farmers "burned" New technology/small business Large scale adaption of products that work Major new investments

IR-4's Future with Biopesticides

- Expansion of activities to answer numerous requests \$ dependent
- Vision of reorganization of IR-4's Food Program priority setting with integration of biopesticides
 - Prioritize most critical pest management needs
 - Look at all types of solutions
 - Develop appropriate data to support solutions
 - Concerns?

IR-4 Biopesticide Workshop

Office of Pesticide Programs Perspectives Linda Hollis, Chief Biochemical Pesticides Branch

Biopesticides and Pollution Prevention Division

The Office of Pesticide Programs Considered Biopesticide Efficacy Trial Priorities

• Various Office of Pesticide Program staff provided input on biopesticide efficacy trial priorities.

The Office of Pesticide Programs Considered Biopesticide Efficacy Trial Priorities

Priorities were primarily based on:

(1) products that might be able to address public health concerns - such as mosquito or tick products

(2) products that might become an alternative or mitigate a pest which was responsible for any section 18 emergency exemption and

(3) any new technology or pesticide that might address pest problems in managed bees, such as Varroa mites, or small hive beetles.

OPP Priorities

<u>Bees</u>

- Small hive beetle / Honey bee B00118
- Tracheal mite/ honeybees B00014
- Varroa mite / honey bees B00015

Citrus Greening

- Asian Citrus Psyllid / Citrus B00086
- Citrus canker/ citrus B00020
- Citrus greening/ citrus B00019

OPP Priorities

Public Health

- Mosquito B00075
- Tick B00001

<u>Chestnut</u>

• Chestnut Blight B00064 via virus and transgenic chestnut PIP

OPP Priorities

Others

- Green mold (Trichoderma) / mushroom houses B00042
- Brown Marmorated Stink Bug B00028, B00029
- Hop Downey Mildew B00254, B00232, B00233, B00239, B00240, B00258, B200251, B00231, B00256, B00237, B00242
- Aflatoxin B00036, B00037, B00038, B00288
- Cabbage maggot/Brassica crops (Not on IR-4 List)
- Methyl bromide replacements / tree fruit B00155
- Glyphosate resistant weeds B00002

Comments & Discussion

Ideal Project?

Guidance/Goals of the Biopesticide Workshop Breakout Groups:

- 1. Severe pest problem-
- 2. Efficacy potential very high
- 3. New tools -Not yet registered
- 4. Organic problem and organic approach
- 5. IPM, Environmental issue, Section 18, Resistance
- 6 All 4 regions US
- 7 Solves Export problem

	S W D	Fire Blit	Cuke Beetl	CNut	Weed Org Sweet Potato	Weed Orn	VMite	Bact FVeg	Clavi	White Fly Fruit Veg	Do wny Org	Gin sen g
Severe	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Efficacy	Y	Y	Ν	Y	Ν	Y	Ν	Ν	Y	Ν	Ν	Ν
New BP	Ν	N	Ν	Y	N	Y	Y	Ν	Ν	Ν	N	Ν
Organic	Y	Y	Y	Ν	Y	Ν	Ν	Ν	Ν	Ν	Y	Ν
IPM Resist	Y	Y	Y	Ν	Ν	N	Y	Y	N	Y	Y	Y
4 Region	Y	Y	Ν	Ν	Y	Y	Y	Y	Ν	Y	Y	Ν
Export	Y	Ν	Ν	Ν	Ν	Ν	Y	Y	Ν	Y	Y	Y

Break time. Yeah !

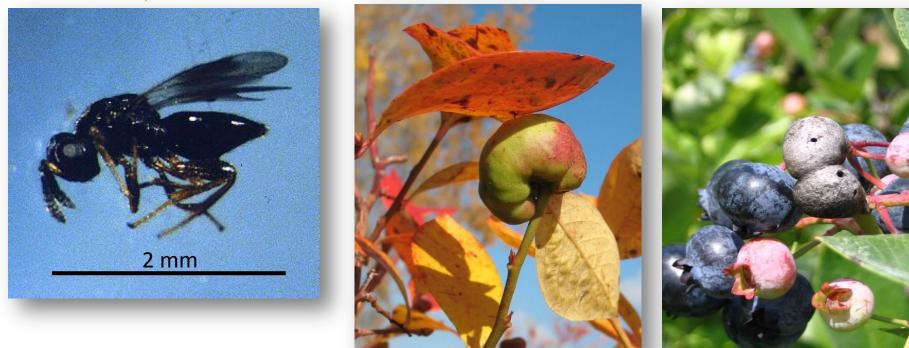
IR-4 Regional Coordinator Comments

2017 IR-4 NCR Biopesticides Priority Needs

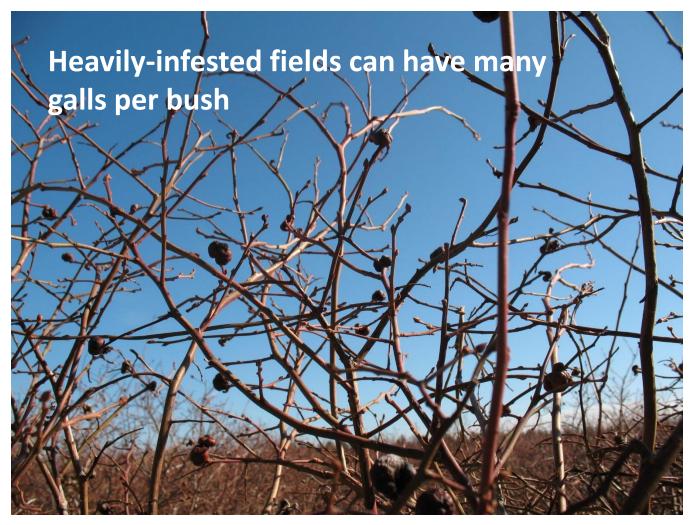
Satoru Miyazaki IR-4 NCR Field Coordinator Michigan State University

Entomology

Blueberry Stem Gall wasp B00119


- PPWS
- The gall that is formed retards and distorts current season growth which reduces the number of floral buds for the next season's crop.
- Affecting over 30,000 acres
- Spreading into the main region

- Some cultivars are highly susceptible, accounting for over 30% of Michigan acreage.
- Growers need a bee-safe approach to protect blueberry shoots from stem gall wasp.
- Application at timings outside bloom could also provide control if product can penetrate young blueberry shoots


Blueberry stem gall wasp

This native wasp pest lays eggs in young blueberry shoots <u>during bloom</u>, leading to a galling response from the bushes. Galls grow as green kidney-shaped structures during summer then harden around harvest time. Galls can also be found in clusters leading to contamination risk.

MICHIGAN STATE

Blueberry Stem Gall Wasp

Adult gall wasps emerge during blueberry bloom, making their control challenging due to bee safety concerns and the similarity between bees and wasps in terms of pesticide toxicity.

Entomology

Spotted Wing Drosophila

- Still causing losses to berry growers in NCR
- Had to stop picking their fields prematurely this summer
- Restrictions on reapplication
- Not enough effective biopesticides to get growers through the growing season

Entomology

Ornamental Horticulture

- Greenhouse B00152 and B00133
- Spider mites, also Thrips and Whiteflies on Gerbera

Label Expansions for Insecticidal Soap, Horticultural Oil and *Beauveria bassiana* Products to Allow Dip Treatments for Cuttings to control thrips

Fruit

- Grape/Fruit rot complex B00052; B00063; B00061
- Blueberry/ Mummy berry, Anthracnose B00062

Vegetables

 Carrot/Cavity spot, forking and stubbing caused by Pythium spp. B00284

Pathology

Ornamental Horticulture

American Chestnut/Chestnut Blight B00064

- caused by the fungus Cryphonectria parasitica.
- a virus disease severely weakening the pathogenic fungus allowing the tree to prevent further infection
- need to develop protocols that will allow us to register the material for commercial use.

Thank You!

Southern Region Biopesticides Priorities

Michelle Samuel-Foo, PhD IR-4 Regional Field Coordinator **UF**

2015 IR-4 Biopesticides Workshop

How Were Priorities Gathered?

TX LA DO THE

OK

TΝ

- 2015 IR-4 Southern Region Priority Setting Workshop in Coconut Grove, FL
- Emails to Southern Region Stakeholders seeking input.
- Direct communication with university faculty and researchers.

Michelle Samuel-Foo

2016 IR-4 Biopesticides Workshop

Background:

- Sweet Potatoes: 7th most important food crop in the world!
- North Carolina responsible for >50% of U.S. production
- In 2014 NC had 72,000 acres harvested, valued at \$355 million

Michelle Samuel-Foo

2016 IR-4 Biopesticides workshop

Courtesy Dr. Lina Maria Quesada, NCSU

Issue:

- Acreage and exports are quickly expanding but disease mgmt tools are not keeping pace
- Not enough clean seed available for acreage
- Less land for rotations and fields becoming infested with soilborne pathogens
- Cultural management not enough
- Few chemical control options

- Caused by Rhizopus stolonifer
- Necrotrophic fungus → entire root can rot in as little as 3 days
 - Export roots can be at sea 7-14 days
- Pathogen is ubiquitous
- Was mainly controlled with dichloran (Botran) but export markets do not allow it anymore
- Need more options to help the industry!

Michelle Samuel-Foo

2016 IR-4 Biopesticides workshop

Courtesy Dr. Lina Maria Quesada, NCSU

Target Spot & Early Blight of Tomato

Courtesy Dr. Gary Vallad, UF-GCREC

Background

- Target spot caused by *Corynespora cassiicola* and early blight by *Alternaria tomatophilia* and *A. solani*.
- Both are aggressive pathogens of foliage and fruit.
- Pathogens produce airborne conidia that cause premature defoliation and fruit losses under favorable weather conditions that can dramatically reduce marketable yields.
- Fruit infections can lead to rapid breakdown of ripening fruit during delivery.

Target Spot & Early Blight of Tomato

- Issues:
- Contact fungicides give best control early in the season when canopy is not dense.
- As canopy density increases, current labelled fungicides (even systemic fungicides) give unsatisfactory levels of control. Little control of fruit infection.
- Fungicide resistance is also becoming a big issue for the tomato industry.
- Small fruit lesions are easy to overlook in packing lines. These small lesions cause post-harvest breakdown of fruit that can lead to rejected shipments.
- Growers are looking for products with minimal post-harvest intervals for mitigating harvest and post-harvest fruit losses.

Courtesy Dr. Gary Vallad, UF-GCREC

Michelle Samuel-Foo

Anthracnose of Pomegranate

Courtesy Dr. Gary Vallad, UF-GCREC

Background

- Anthracnose, caused by *Colletotrichum* spp. cause defoliation and fruit rot.
- Pathogen is common on pomegranate throughout Southeast.
- Pathogen produces windborne ascospores and conidia that are splash dispersed during rain events. Pathogen causes premature defoliation and fruit losses under favorable weather conditions.
- Pathogen is often recovered from flower buds and blooms early in the season.

Michelle Samuel-Foo

Anthracnose of Pomegranate

Courtesy Dr. Gary Vallad, UF-GCREC

Michelle Samuel-Foo

Issues:

- New industry in the Southeast, with few conventional products and little efficacy data available for labelled biopesticides.
- Fruit loss is a major limitation to increased commercial production.
- Residue testing performed for two effective fungicides. Both products are high-risk for resistance. Resistant isolates already identified in research trials.
- Growers are looking for products with minimal post-harvest intervals for protecting foliage mitigating fruit losses.
- Growers have expressed interest in organic pomegranate production.

Courtesy Dr. Shouan Zhang, UF

Background

- Florida is ranked No. 1 in the US production, acreage, and total value of fresh market snap beans
- Florida growers harvested 32,000 acres of snap beans with \$135 million in 2009-2010
- South Florida produces 100% of US fresh market snap beans during winter months
- Miami-Dade County ranks No. 1 in FL and USA in production of fresh market snap beans.

Michelle Samuel-Foo 2016 IR-4 Biopesticides workshop

Bacterial Blight of Snap Beans in Florida

Background:

- Common bacterial blight is caused by *Xanthomonas campestris* pv. *phaseoli*, in snap beans in Florida.
- Severity increases when there is higher rainfall during the winter months
- The bacterium is known to be seed borne
- Up to 100% of plants can be infected, with up to 43% reductions in total yield and further losses occurring due to the poor quality of infected pods

Issues:

• Copper application is the major control strategy however, control is often unsatisfactory.

Courtesy Dr. Shouan Zhang, UF

 Lack of efficacy appears to be related to the frequent occurrence of copper-resistant strains of bacterial pathogens, therefore others need to be evaluated

Michelle Samuel-Foo

R-4 Weed Management in Row Middles in Organic Production

Background:

- Organic growers have limited to no management options for row middles where weeds can compete with the crop and host pests and diseases
- Broadleaf weeds are the easiest to kill but most bioherbicides are weak on grasses

Issue:

- Weed management in row middles. Use of Bioherbicides in combination with conventional herbicides for resistance management is needed
- Need a bioherbicide that moves in the plant as there are no effective management options for perennial weeds such as nutsedge
- Many bioherbicides would be excellent tank mix partners on conventional farms for resistance management but the price of most products is the limiting factor.

Courtesy Dr. Nathan Boyd, UF

Michelle Samuel-Foo 2016 IR-4 Biopesticides workshop

